Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 6 de 6
Фильтр
1.
Anal Biochem ; 666: 115079, 2023 04 01.
Статья в английский | MEDLINE | ID: covidwho-2237188

Реферат

BACKGROUND AND AIMS: The coronavirus disease 2019 (COVID-19) pandemic is a serious health problem worldwide. Early virus detection is essential for disease control and management. Viral antigen detection by ELISA is a cost-effective, rapid, and accurate antigen diagnostic assay which could facilitate early viral detection. METHOD: An antigen-capture sandwich ELISA was developed using novel nucleocapsid (NP)-specific mouse monoclonal antibodies (MAbs). The clinical performance of the assay was assessed using 403 positive and 150 negative respiratory samples collected during different SARS-CoV-2 variants outbreaks in Iran. RESULTS: The limit of detection of our ELISA assay was found to be 43.3 pg/ml for recombinant NP. The overall sensitivity and specificity of this assay were 70.72% (95% CI: 66.01-75.12) and 100% (95% CI: 97.57-100), respectively, regardless of Ct values and SARS-CoV-2 variants. There was no significant difference in our assay sensitivity for the detection of Omicron subvariants compared to Delta variant. Assay sensitivity for the BA.5 Omicron subvariant was calculated as 91.89% (95% CI: 85.17-96.23) for samples with Ct values < 25 and 82.70% (95% CI: 75.19-88.71) for samples with Ct values < 30. CONCLUSION: Our newly developed ELISA method is reasonably sensitive and highly specific for detection of SARS-CoV-2 regardless of the variants and subvariants of the virus.


Тема - темы
COVID-19 , SARS-CoV-2 , Animals , Mice , Antibodies, Monoclonal , Enzyme-Linked Immunosorbent Assay/methods , Sensitivity and Specificity , Antibodies, Viral , COVID-19 Testing
2.
Front Med (Lausanne) ; 9: 973036, 2022.
Статья в английский | MEDLINE | ID: covidwho-2232857

Реферат

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the outbreak led to the coronavirus disease 2019 (COVID-19) pandemic. Receptor binding domain (RBD) of spike (S) protein of SARS-CoV-2 is considered as a major target for immunotherapy and vaccine design. Here, we generated and characterized a panel of anti-RBD monoclonal antibodies (MAbs) isolated from eukaryotic recombinant RBD-immunized mice by hybridoma technology. Epitope mapping was performed using a panel of 20-mer overlapping peptides spanning the entire sequence of the RBD protein from wild-type (WT) Wuhan strain by enzyme-linked immunosorbent assay (ELISA). Several hybridomas showed reactivity toward restricted RBD peptide pools by Pepscan analysis, with more focus on peptides encompassing aa 76-110 and 136-155. However, our MAbs with potent neutralizing activity which block SARS-CoV-2 spike pseudovirus as well as the WT virus entry into angiotensin-converting enzyme-2 (ACE2) expressing HEK293T cells showed no reactivity against these peptides. These findings, largely supported by the Western blotting results suggest that the neutralizing MAbs recognize mainly conformational epitopes. Moreover, our neutralizing MAbs recognized the variants of concern (VOC) currently in circulation, including alpha, beta, gamma, and delta by ELISA, and neutralized alpha and omicron variants at different levels by conventional virus neutralization test (CVNT). While the neutralization of MAbs to the alpha variant showed no substantial difference as compared with the WT virus, their neutralizing activity was lower on omicron variant, suggesting the refractory effect of mutations in emerging variants against this group of neutralizing MAbs. Also, the binding reactivity of our MAbs to delta variant showed a modest decline by ELISA, implying that our MAbs are insensitive to the substitutions in the RBD of delta variant. Our data provide important information for understanding the immunogenicity of RBD, and the potential application of the novel neutralizing MAbs for passive immunotherapy of SARS-CoV-2 infection.

3.
Iran J Immunol ; 18(1): 47-53, 2021 03.
Статья в английский | MEDLINE | ID: covidwho-2091347

Реферат

BACKGROUND: Incidence and severity of SARS-CoV2 infection are significantly lower in children and teenagers proposing that certain vaccines, routinely administered to neonates and children may provide cross-protection against this emerging infection. OBJECTIVE: To assess the cross-protection induced by prior measles, mumps and rubella (MMR) vaccinations against COVID-19. METHODS: The antibody responses to MMR and tetanus vaccines were determined in 53 patients affected with SARS-CoV2 infection and 52 age-matched healthy subjects. Serum levels of antibodies specific for NP and RBD of SARS-CoV2 were also determined in both groups of subjects with ELISA. RESULTS: Our results revealed significant differences in anti-NP (P<0.0001) and anti-RBD (P<0.0001) IgG levels between patients and healthy controls. While the levels of rubella- and mumps specific IgG were not different in the two groups of subjects, measles-specific IgG was significantly higher in patients (P<0.01). The serum titer of anti-tetanus antibody, however, was significantly lower in patients compared to healthy individuals (P<0.01). CONCLUSION: Our findings suggest that measles vaccination triggers those B cells cross-reactive with SARS-CoV2 antigens leading to the production of increased levels of measles-specific antibody.


Тема - темы
Antibodies, Viral/blood , Antigens, Viral/immunology , COVID-19/immunology , Immunization , Immunoglobulin G/blood , Measles-Mumps-Rubella Vaccine/therapeutic use , SARS-CoV-2/immunology , Age Factors , Aged , B-Lymphocytes/immunology , B-Lymphocytes/virology , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , COVID-19/virology , Case-Control Studies , Cross Protection , Cross Reactions , Female , Host-Pathogen Interactions , Humans , Male , Measles-Mumps-Rubella Vaccine/immunology , Middle Aged , Tetanus Toxoid/immunology , Tetanus Toxoid/therapeutic use
4.
Frontiers in medicine ; 9, 2022.
Статья в английский | EuropePMC | ID: covidwho-2034155

Реферат

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the outbreak led to the coronavirus disease 2019 (COVID-19) pandemic. Receptor binding domain (RBD) of spike (S) protein of SARS-CoV-2 is considered as a major target for immunotherapy and vaccine design. Here, we generated and characterized a panel of anti-RBD monoclonal antibodies (MAbs) isolated from eukaryotic recombinant RBD-immunized mice by hybridoma technology. Epitope mapping was performed using a panel of 20-mer overlapping peptides spanning the entire sequence of the RBD protein from wild-type (WT) Wuhan strain by enzyme-linked immunosorbent assay (ELISA). Several hybridomas showed reactivity toward restricted RBD peptide pools by Pepscan analysis, with more focus on peptides encompassing aa 76–110 and 136–155. However, our MAbs with potent neutralizing activity which block SARS-CoV-2 spike pseudovirus as well as the WT virus entry into angiotensin-converting enzyme-2 (ACE2) expressing HEK293T cells showed no reactivity against these peptides. These findings, largely supported by the Western blotting results suggest that the neutralizing MAbs recognize mainly conformational epitopes. Moreover, our neutralizing MAbs recognized the variants of concern (VOC) currently in circulation, including alpha, beta, gamma, and delta by ELISA, and neutralized alpha and omicron variants at different levels by conventional virus neutralization test (CVNT). While the neutralization of MAbs to the alpha variant showed no substantial difference as compared with the WT virus, their neutralizing activity was lower on omicron variant, suggesting the refractory effect of mutations in emerging variants against this group of neutralizing MAbs. Also, the binding reactivity of our MAbs to delta variant showed a modest decline by ELISA, implying that our MAbs are insensitive to the substitutions in the RBD of delta variant. Our data provide important information for understanding the immunogenicity of RBD, and the potential application of the novel neutralizing MAbs for passive immunotherapy of SARS-CoV-2 infection.

5.
Pathog Dis ; 80(1)2022 02 09.
Статья в английский | MEDLINE | ID: covidwho-1612517

Реферат

Given the emergence of SARS-CoV-2 virus as a life-threatening pandemic, identification of immunodominant epitopes of the viral structural proteins, particularly the nucleocapsid (NP) protein and receptor-binding domain (RBD) of spike protein, is important to determine targets for immunotherapy and diagnosis. In this study, epitope screening was performed using a panel of overlapping peptides spanning the entire sequences of the RBD and NP proteins of SARS-CoV-2 in the sera from 66 COVID-19 patients and 23 healthy subjects by enzyme-linked immunosorbent assay (ELISA). Our results showed that while reactivity of patients' sera with reduced recombinant RBD protein was significantly lower than the native form of RBD (P < 0.001), no significant differences were observed for reactivity of patients' sera with reduced and non-reduced NP protein. Pepscan analysis revealed weak to moderate reactivity towards different RBD peptide pools, which was more focused on peptides encompassing amino acids (aa) 181-223 of RBD. NP peptides, however, displayed strong reactivity with a single peptide covering aa 151-170. These findings were confirmed by peptide depletion experiments using both ELISA and western blotting. Altogether, our data suggest involvement of mostly conformational disulfide bond-dependent immunodominant epitopes in RBD-specific antibody response, while the IgG response to NP is dominated by linear epitopes. Identification of dominant immunogenic epitopes in NP and RBD of SARS-CoV-2 could provide important information for the development of passive and active immunotherapy as well as diagnostic tools for the control of COVID-19 infection.


Тема - темы
Antibodies, Viral/immunology , COVID-19/immunology , Immunodominant Epitopes/immunology , Nucleocapsid/immunology , Receptors, Virus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Aged , Amino Acid Motifs , Antibodies, Viral/blood , COVID-19/virology , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Immunodominant Epitopes/chemistry , Iran , Male , Middle Aged , Pandemics , Peptides/immunology , Protein Binding , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Viral Proteins/immunology
6.
Viral Immunol ; 34(10): 708-713, 2021 12.
Статья в английский | MEDLINE | ID: covidwho-1595620

Реферат

The coronavirus infectious disease 2019 (COVID-19), which is initiated by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has imposed critical challenges to global health. Understanding the kinetic of SARS-CoV-2-specific IgM and IgG responses in different subsets of COVID-19 patients is crucial to get insight into the humoral immune response elicited against the virus. We investigated IgM and IgG responses against SARS-CoV-2 nucleocapsid (N) and receptor-binding domain (RBD) of spike protein in two groups of recovered and deceased COVID-19 patients. The levels of IgM and IgG specific to N and RBD proteins were detected by ELISA. N- and RBD-specific IgM was higher in deceased patients in comparison with recovered patients, while there was no significant difference in N- and RBD-specific IgG between the two groups. A significant correlation was observed between IgG and IgM titers against RBD and N, in both groups of patients. These results argue against impaired antibody response in deceased COVID-19 patients.


Тема - темы
Antibodies, Viral/analysis , Antibodies, Viral/immunology , Antibody Formation , Antigens, Viral/immunology , COVID-19/immunology , COVID-19/mortality , SARS-CoV-2/immunology , Female , Humans , Immunoglobulin G/analysis , Immunoglobulin G/immunology , Immunoglobulin M/analysis , Immunoglobulin M/immunology , Iran/epidemiology , Male , Middle Aged , Nucleocapsid/chemistry , Nucleocapsid/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
Критерии поиска